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Four Common Mutations of the Cystathionine
B-Synthase Gene Detected by Multiplex PCR and
Matrix-assisted Laser Desorption/lonization
Time-of-Flight Mass Spectrometry

ANGELA HARKSEN, PER MAGNE UELAND, HELGA REFsuM, and KLAus MEYER

Background: A deficiency of cystathionine B-synthase
(CBS) is the most frequent cause of homocystinuria. The
effect of therapy is related to the underlying CBS geno-
type, which makes early diagnosis of this genetic defect
important. Our aim was to develop a fast and reliable
method based on matrix-assisted laser desorption/ioniza-
tion time-of-flight (MALDI-TOF) mass spectrometry for
the determination of common mutations of the CBS gene.
Methods: We used MALDI-TOF mass spectrometry to
detect four common CBS mutations (G307S, T272M,
1278T, and V320A). The method is based on multiplex
PCR of exons 7, 8, and 9, followed by single nucleotide
extension in the presence of dideoxy NTPs of four
primers targeted at the separate mutation sites. The
extension products, as well as the 3-hydroxypicolinic
acid matrix, were incubated with cation-exchange beads
to remove disturbing salt contaminants.

Results: The above-mentioned mutations were deter-
mined in samples from 12 homocystinuria patients. The
MALDI-TOF spectra allowed unambiguous discrimina-
tion between primers and extension products (>9 Da) in
the mass range between 4500 and 7500 Da. No labeled
primers or ddNTPs were required. The genotyping was
verified by reference technique.

Conclusion: Our results demonstrate fast, simple, and
unambiguous multiplex genotyping of four common
CBS mutations by MALDI-TOF mass spectrometry.
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A deficiency of cystathionine B-synthase (CBS) is the most
frequent cause of homocystinuria, an autosomal recessive
disease that leads to highly increased concentrations of
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plasma total homocysteine (1). These patients suffer from
premature occlusive vascular disease, dislocation of the
lens, and neurological defects (2). The plasma total ho-
mocysteine concentrations can be lowered and the clinical
symptoms prevented by treatment with pyridoxine alone
or pyridoxine combined with betaine and folic acid
(1, 3,4). The effectiveness of the therapy is related to the
underlying CBS genotype (5), which makes early diagno-
sis of this genetic defect important.

The CBS gene has been mapped to chromosome
21q22.3 (6). It was cloned in 1993 (7), and to date, >60
mutations have been reported (8). The prevalence of the
various mutations differs markedly between countries,
and screening for homocystinuria should be optimized
accordingly (5, 9). In a recent study, we found that the
most common mutations in Norway are located on exons
7,8, and 9 (9).

Conventional methods for mutation detection are
based on gel or capillary electrophoresis. These methods
are time-consuming and provide no direct molecular
information. Matrix-assisted laser desorption/ionization
time-of-flight (MALDI-TOF) mass spectrometry (10, 11)
for the analysis of DNA (12, 13) has become an attractive
alternative because of advances in both sample prepara-
tion and instrument performance. Reduction of cation
adduction of oligonucleotides (14-16); minimization of
DNA degradation, including depurination (17-19); and
selection of proper matrices (20-24) are important to
obtain high sensitivity, and the delayed extraction tech-
nology (25) has reduced ion fragmentation and increased
spectral resolution. Thus, MALDI-TOF mass spectrometry
represents a fast method (seconds to minutes) for the
analysis of oligonucleotides up to ~2 kbp (26). The
spectral data provide information about base sequence
(27,28), and resolution is now at the base level when
DNA fragments of several kDa are analyzed. Several
methods for mutation detection with MALDI-TOF have
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been described recently (29-34), but only a few involve
multiplex genotyping (35, 36).

We present here a simple and reliable method based on
MALDI-TOF mass spectrometry for the determination of
common mutations of the CBS gene. The technique in-
volves a primer extension reaction, as originally described
by Haff and Smirnov (35), and simultaneously detects
four point mutations on three different exons: exon 7,
T262M (C785T); exon 8, G307S (G919A) and I1278T
(T833C); exon 9, V320A (T959C).

Materials and Methods

REAGENTS

The QIAAmp Blood Kit was obtained from Qiagen. The
Taq polymerase (DyNAzyme™) and reaction buffer for
PCR were from Finnzymes; the dNTPs and ddNTPs were
from Pharmacia Biotech. The primers were designed with
the software Oligo 4.0 (National Biosciences) and synthe-
sized by Eurogentec. PCR products were purified with the
QIAquick PCR Purification Kit (cat. no. 28106) from
Qiagen. The enzyme and the reaction buffer (ThermoSe-
quenase™) for the primer extension reaction were ob-
tained from Amersham Life Sciences.

The 3-hydroxypicolinic acid, ammonium acetate, and
ammonium citrate were purchased from Sigma Aldrich.
The cation-exchange beads (AG50W-X8 resin) were from
Bio-Rad. The beads were activated by incubation in a 1
mol/L ammonium acetate solution and then washed 5
times with deionized water.

ASSAY DESIGN

The initial step involved multiplex PCR amplification of
exons 7 (T262M), 8 (G307S, 1278T), and 9 (V320A) contain-
ing the mutation sites (9). Using the amplified DNA as
template, the four mutation sites were targeted by site-
specific primers (Table 1), which were extended by one
matching ddTNP. The four extension primers were de-
signed so that the primers and their extension products
spanned a mass range between 4500 and 7500 Da. They
were sized to avoid mass interference between primers,
extension products, and depurination products.

DNA SAMPLES AND PCR

Blood samples were obtained from 12 patients with
known mutations in the CBS gene. DNA was isolated
with the QIAAmp Blood Kit. Amplification of exons 7, §,
and 9 of the CBS gene was accomplished by multiplex
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PCR, using the primers 5-CCAGGCAGGGACCCAA-
GAAT-3" and 5'-CCACTCCGCACTGTCCCTCT-3" for
exon 7, 5'-TTTGGCCGGGCTCTGGACTC-3" and 5'-TT-
TCTGGCCTTGAGCCCTGAA-3' for exon 8, and 5'-CT-
GACGGGCTGTGGTGGGGTCC-3" and 5-CGCACAG-
CAGCCCCTCTTGCGC-3'" for exon 9. The reaction was
performed in a total volume of 100 pL containing 100 ng
of template DNA, 1.5 uL of Taq DNA polymerase (1
U/pL), 1.5 mmol/L MgCl,, 125 umol/L dNTPs, and 20
pmol of each primer. The cycling conditions were 95 °C
for 2 min, followed by 36 cycles at 94 °C for 30 s, 64 °C for
40 s, and a final extension at 72 °C for 6 min.

To remove excess primers and dNTPs, the amplifica-
tion product was purified with the QIAquick PCR Puri-
fication Kit according to the instructions given by the
manufacturer. The product was eluted in 45 uL of Tris-
EDTA buffer (10 mmol/L Tris, 1 mmol/L EDTA, pH 8.0).

PRIMER EXTENSION REACTION

The multiplex extension reaction was performed with a
combination of 10 pmol of each of four specific extension
primers (Table 1). The total reaction volume of 60 uL
contained 10 wmol/L of each ddNTP, 8 U of ThermoSe-
quenase DNA polymerase, 2 uL of ThermoSequenase
reaction buffer, and the total multiplex PCR reaction
product concentrated down to a volume of 45 uL. The
cycling conditions were 40 cycles at 94 °C for 30 s, 64 °C
for 30 s, and 72 °C for 1 min. The PCR and extension
reactions were performed on a Perkin-Elmer Thermal
Cycler 480.

SAMPLE PREPARATION

The extension reaction products were lyophilized, dis-
solved in 10 L of distilled water, and then incubated for
at least 3 h with cation-exchange beads. 3-Hydroxypico-
linic acid (0.5 mol/L in water), used as matrix, was
incubated separately with beads. To avoid formation of
and interference from adducts, the ammonium acetate-
treated beads were washed extensively with deionized
water before use. The steel surface of the MALDI probe
was exposed to 50 mmol/L ammonium citrate for 10 min
to avoid sodium contamination of the target. The probe
was not exposed to beads. Matrix solution (1 uL) was then
applied to the probe and allowed to dry before deposition
of 1 uL of primer extension sample. This sequential
procedure led to higher ion yields than those observed
when a mixture of matrix and sample was deposited on

Table 1. Sequences and sizes of the DNA oligonucleotides used as extension probes.

Amino acid

substitution Exon Sequence
T262M 7 5'-CGGGCGGCACCATCA-3’
G307S 5'-TACGAGGTGGAAGGGATC-3’
1278T 5'-ACCCTTCGGGATCCACCCCA-3’

© 00

V320A

5'-TTTTTGCTGGACAGGACGGTGG-3’

Mass, Da
Wild type, Mutation type,
Unextended extended extended
4563 4836 (+ddC) 4851 (+ddT)
5629 5942 (+ddG) 5926 (+ddA)
5983 6280 (+ddA) 6296 (+ddG)
6837 7135 (+ddA) 7151 (+ddG)
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the probe. Because of the inhomogeneous crystallization
of the 3-hydroxypicolinic acid matrix, each sample was
analyzed at five different positions.

MALDI-TOF MASS SPECTROMETRY

The MALDI-TOF instrument was a Bruker Reflex III
(Bruker-Franzen Analytik) with a two-stage gridless re-
flector. The spectrometer was equipped with a nitrogen
laser (Laser Science) and a pulsed-ion extraction source.
All analyses were run in the reflector mode with nega-
tively charged ions of 20 kV energy. To avoid detector
saturation from matrix ions, masses of <2000 Da were
suppressed by an ion deflector. The typical number of
shots was 50-100. A synthetic oligonucleotide (31-mer;
Eurogentec) was used as external standard.

Results

DETECTION OF FOUR CBS MUTATIONS

Identification of the various alleles was based on the
differences in mass shift caused by extension of the
primer with two different ddNTPs. The masses of the four
ddNTPs were 297.21 (ddA), 273.19 (ddC), 313.21 (ddG),
and 288.20 (ddT) Da. Fig. 1 shows the results of three
patient samples harboring all eight alleles of the four
mutation sites. Fig. 1A shows the mass spectrum of a
sample heterozygous for the 1278T mutation (extended by
ddA and ddG), and wild type for T262M, G307S, and
V320A. Fig. 1B shows a sample heterozygous for both
G307S and V320A, extended by the pairs ddG/ddA and
ddA/ddG, respectively. Fig. 1C shows the extension by
both ddC and ddT of a sample heterozygous for the
T262M mutation. In all traces in Fig. 1, the extension
products were resolved from the primers. With this
system, we genotyped blood from 12 homocystinuria
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patients, and the results (data not shown) were identical
to those obtained with reference techniques (9).

Each blood sample was PCR amplified and processed
independently three times, and each preparation depos-
ited on the MALDI probe was analyzed at five different
positions. Essentially the same results were obtained.

Additional weak signals corresponded to mass peaks
of ammonium adducts. There were essentially no sodium
adducts. Peaks without labels were minor and could be
assigned to depurination (—132 Da) or the presence of an
unknown species of 60 Da.

RESOLUTION AND PEAK PATTERN
The peak doublet shown in the inset of Fig. 1C shows the
resolution of the MALDI-TOF system in the mass range of
4800-4900 Da. The mass difference between T and C is 15
Da, and the peaks were baseline resolved. The smallest
possible mass difference between two bases is 9 Da, which
is the difference between T and A. This situation does not
exist for the CBS mutation investigated here, but the
baseline resolution at a 15-Da difference suggests that an
A-T difference of 9 Da would be clearly distinguished.
Although the peak intensities of all extension primers
and products varied depending on sample and analysis
position, all spectra showed roughly the same peak pat-
tern as shown in Fig. 1. After 40 thermocycles, three of the
extension primers showed only weak mass signals,
whereas the V320A primer gave a signal equaling that of
the extension products.

Discussion
We have developed a MALDI-TOF mass spectrometry
procedure for the simultaneous detection of four common
mutations in the CBS gene. All four mutations were

_ V320A+ddA
2000 A
L V320A
1500 |- T262M+ddC
1000 r G307S+ddG  1278T+ddA
500 B T26|2M l G307S8 al278-|— 1278T+ddG
' : j—-— ~ P : : 1
= 0 ; L : . )
D B . : Fig. 1. MALDI-TOF spectra of four
g 200 : CBS mutations.
£ 1500 | G307S+ddA | :FZOA*hddG Spectra of samples from three patients
o I : harboring all four mutations are shown.
-_é 1000 - The extension products covered a mass
Y 500 [ range of 4500-7500 Da. Primers and
&) _' ; extended primers are assigned by peak
o : t L 1 1 : ) labels. The inset in panel C shows the
_ : : . peak resolution corresponding to 15
800 C : T262M+ddT : : Da. All spectra were acquired in the
5 ! : : negative ion mode.
600 - ! AM=15Da ;
400 |- : / i
B ”‘1800 4850 4900
200 L PP (Y A A
ol . | ) | : , 1 S

5000 6000

m/z

7000



1160

unambiguously determined for the 12 homocystinuria
patients.

To date, the purification of samples to allow successful
detection of oligonucleotides has required tedious and
lengthy procedures. These approaches involve ethanol
precipitation (37) and various solid-phase methods com-
bined indirectly (14,15) or directly (16,38,39) with
MALDI-MS. In 1992, Nordhoff et al. (14) described a
procedure for removing alkali cations from nucleic acid
samples based on a treatment of the matrix and the
deposited analyte/matrix droplet by cation-exchange
beads. We have used cation-exchange beads for separate
desalting of the matrix and analytes. Incubation times of
3 h gave high quality and reproducible mass spectra. If
salt adducts were detected, incubation overnight was
sufficient. No beads were required on the sample stage.
Additional procedures to improve stability (17, 18) or to
optimize the charge state of the DNA (19) were not
necessary.

The performance of our system in terms of resolution
equals that reported recently for a delayed extraction
MALDI-TOF system used for single-nucleotide polymor-
phism identification (36). A clear separation of oligonu-
cleotides with only an A-T (9 Da) difference in mass
should be possible within the mass range investigated
(4500-7500 Da). No mass-tagged ddNTPs (34) or primers
(35) were required to carry out multiplex detection of the
four CBS mutations.

Signal interference usually did not obscure interpreta-
tion of spectra. However, peak doublets ddA/ddG and
ddC/ddT caused by heterozygous mutations should be
evaluated to avoid misinterpretation of ammonium ad-
ducts (with a mass increase of 17 Da). In our experience,
the doublets related to sample heterozygosity have a
balanced height, whereas ammonium adducts usually
cause smaller peaks.

The mass spectra usually showed good reproducibility,
allowing unequivocal interpretation of data, but small
variations between sample preparations or different anal-
yses of the same sample preparation were occasionally
observed. This may be the result of unbalanced PCR,
variation in primer extension efficiency, inhomogeneous
spatial distribution of oligonucleotides and matrix at the
MALDI probe, variability in ionization/desorption, and
detection probability of the oligonucleotides.

In conclusion, we used MALDI-TOF mass spectrometry
with pulsed ion extraction and in the reflector mode for
multiplex genotyping of four common mutations in the
CBS gene. The technique is based on primer extension
without DNA strand separation or labeling of primers or
ddNTPs. The sample purification step is simple and
relatively inexpensive and involves treatment of the ex-
tension products and the matrix with cation-exchange
beads. This procedure ensures sensitive oligonucleotide
analysis of high quality without mass interference or
sodium adduct formation. Our results demonstrate un-
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ambiguous multiplex genotyping by MALDI-TOF mass
spectrometry.
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